For each category $\mathcal{C}$ we can form a dual category $\mathcal{C}^{op}$. The dual category has the same objects as the original, and the same number of arrows, but all are reversed. That is given $f : A \rightarrow B$ in $\mathcal{C}$ we have $f' : B \rightarrow A$ in $\mathcal{C}^{op}$. Composition and identity is formed in the obvious way.
CommentsGuest Name:Comment:
[math/Sets/] 1.Introduction to Sets;;Default.aspx?id=1;;;;[math/Sets/] 2.Linear regression using python and matrix alg;;Default.aspx?id=2;;;;[math/Misc/Magic/] 1.1 = 0.999...;;Default.aspx?id=3;;;;[math/Misc/Oddities/] 1.Russel's Paradox;;Default.aspx?id=4;;;;[math/Misc/Oddities/] 2.The Orwell Group;;Default.aspx?id=20;;;;[math/Theories/Algebras/Group_Theory/] 1.Groups in General;;Default.aspx?id=5;;;;[math/Theories/Algebras/Monoid_Theory/] 1.Monoids in General;;Default.aspx?id=6;;;;[math/Theories/Algebras/Semigroup/] 1.Semigroups in General;;Default.aspx?id=7;;;;[math/Theories/Category_Theory/In_General/] 1.Definition;;Default.aspx?id=8;;;;[math/Theories/Category_Theory/In_General/] 2.Dual Category;;Default.aspx?id=16;;;;[math/Theories/Category_Theory/In_General/] 3.Mono-, Epi- and Isomorphisms;;Default.aspx?id=10;;;;[math/Theories/Category_Theory/In_General/] 4.Initial and Terminal Objects;;Default.aspx?id=14;;;;[math/Theories/Category_Theory/In_General/] 5.Products and Coproducts;;Default.aspx?id=15;;;;[math/Theories/Category_Theory/In_General/] 6.Exponentation and Cartesian Closed Categories;;Default.aspx?id=13;;;;[math/Theories/Category_Theory/Functors/] 1.Definition;;Default.aspx?id=9;;;;[math/Theories/Category_Theory/Functors/] 2.Full, Faithful and Embeddings;;Default.aspx?id=21;;;;[math/Theories/Category_Theory/Functors/] 3.Preserves and Reflects;;Default.aspx?id=22;;;;[math/Theories/Category_Theory/Functors/] 4.Contra-, Co- and Bivariant;;Default.aspx?id=23;;;;[math/Theories/Category_Theory/Functors/] 5.Co- and Contravariant Hom Functors;;Default.aspx?id=24;;;;[math/Theories/Category_Theory/Natural_Transformations/] 1.Definition and Examples;;Default.aspx?id=11;;;;[math/Theories/Category_Theory/Adjoints/] 1.Definition and Examples;;Default.aspx?id=25;;;;[math/Theories/Category_Theory/Applications/] 1.Transition Systems, Hoare Languages and Adjoints;;Default.aspx?id=26;;;;[math/Linear_Algebra/Misc/] 1.Cosine Similarity;;Default.aspx?id=12;;;;[math/Relations/] 1.Intro;;Default.aspx?id=17;;;;[math/Relations/] 2.Properties and Special Relations;;Default.aspx?id=18;;;;[math/Relations/] 3.Functions as relations;;Default.aspx?id=19;;;;[math/Functions/Elementary/] 1.Logarithmic;;Default.aspx?id=27;;;;[math/Functions/Elementary/] 2.Absoulte Value;;Default.aspx?id=28;;;;[math/Functions/Elementary/] 3.The Square Root;;Default.aspx?id=29;;;;